
Do Data Dependencies in Source Code complement Call Dependencies
for Understanding Requirements Traceability?

Hongyu Kuang1,2, Patrick Mäder2, Hao Hu1, Achraf Ghabi2, LiGuo Huang3, Lv Jian1, and Alexander Egyed2

1State Key Lab for Novel Software

Technology
 Nanjing University

 Nanjing, Jiangsu, China
hector.khy@gmail.com

myou|lj@nju.edu.cn

2Institute of Systems Engineering and
Automation

Johannes Kepler University
Linz, Austria

firstname.lastname@jku.at

3Dept. of Computer Science
and Engineering

Southern Methodist University
Dallas, TX 75275, USA
lghuang@lyle.smu.edu

Abstract—It is common practice for requirements traceability
research to consider method call dependencies within the
source code (e.g., fan-in/fan-out analyses). However, current
approaches largely ignore the role of data. The question this
paper investigates is whether data dependencies have similar
relationships to requirements as do call dependencies. For
example, if two methods do not call one another, but do have
access to the same data then is this information relevant? We
formulated several research questions and validated them on
three large software systems, covering about 120 KLOC. Our
findings are that data relationships are roughly equally rele-
vant to understanding the relationship to requirements traces
than calling dependencies. However, most interestingly, our
analyses show that data dependencies complement call depen-
dencies. These findings have strong implications on all forms of
code understanding, including trace capture, maintenance, and
validation techniques (e.g., information retrieval).

Keywords- requirements traceability; feature location; source
code dependencies; program analysis; method call dependencies;
method data dependencies;

I. INTRODUCTION

Requirements traceability refers to the practice of captur-
ing relations between artifacts of a development process as
traceability links. These links can support stakeholders in
development-related tasks if they are of high quality. Ensur-
ing high quality traceability links is especially difficult for
requirements–to-code traces due to typically large numbers
of required traces and frequent changes to the traced code.

Requirements traceability research has thus started to fo-
cus on control dependencies within source code in order to
gain more information on what code elements contribute to
the implementation of a requirement and to assess whether
existing traceability relations are correct [1]. Among others,
researchers use fan-in/fan-out analyses [2], identified typical
patterns of requirements implementation, [3] and comple-
ment keyword matching techniques on the code with control
flow analyses [4,9]. All the work we found is based on either
statically or dynamically analyzing sequences of method
calls in order to deduct dependencies between methods.
These analyses, essentially, investigate the callers and callees
of a method in order to assess traceability between a method
and a requirement. However, method calls are just one form

of communication in source code. Only few current ap-
proaches (e.g., [13]) consider the role of data sharing for
assessing traceability.

This paper investigates whether method data dependen-
cies are as relevant as method call dependencies and, if yes,
whether call and data dependencies are complementary for
assessing requirements-to-code relationships in alleviating
each other’s weaknesses. For example, if two methods do not
call one another, but do have access to the same data then is
this information relevant? We formulated several research
questions and validated them on three large software sys-
tems, covering about 120 KLOC. The validation is based on
the investigation of 4,767 methods in context of 50 require-
ments, resulting in a total of 86,866 assessments.

To answer the research questions, we considered all me-
thods that were connected by either call or data dependencies
and for which we had initial requirements-to-code traces.
For any given method we then used the traces of its neigh-
boring methods to derive a trace recommendation for that
given method and compared it with the initial trace. These
initial traces could have been created manually; they could
be old versions of earlier releases, or automatically generated
ones. The recommendation is thus never biased by its initial
trace but solely determined from the initial traces of its
neighbor methods which makes it useful for activities such
as trace capture or trace maintenance. These applications are
explored in future work.

Our findings are that data relationships have a slightly
weaker, but still strong relationship to requirements tracea-
bility. But, most interestingly, our analyses show that data
dependencies complement call dependencies strongly. If we
separate between precision and recall (i.e., wrong trace rate
vs. missing trace rate), we find that the combined analysis
results in the better for the call/data analyses. This observa-
tion is of particular importance because the traceability re-
search community has found that complementary techniques
usually benefit either precision or recall but not both. These
findings thus have strong implications on all forms of code
understanding, including trace capture, maintenance, and
validation techniques (e.g., information retrieval).

The remainder of this paper is structured as follows. Sec-
tion II briefly introduces the concepts of requirements tra-
ceability and code dependencies. Section III states our re-
search questions and Section IV introduces the software 978-1-4673-2312-3/12/$31.00 ©2012 IEEE

systems that we evaluated for answering those questions.
Section V discusses the developed framework for capturing
and analyzing code dependencies. Section VI reports the
results of our experiments and answers the research ques-
tions. In Section VII we discuss possible improvements to
the applied recommendation algorithm. Section VIII refers to
limitations of our work. Section IX discusses related work in
the area of requirements traceability, feature location, and
program analysis. Finally, Section X concludes and proposes
the practical implications of this paper.

II. TRACEABILITY AND CODE DEPENDENCIES

A. Requirements to Code Traceability

A traceability link captures where in the source code a
requirement is implemented. This is similar to feature map-
ping if we think of requirements as features [4,8,9]. In this
paper we focus on requirements to source code mappings at
the granularity of methods. However, our observations
should apply for traces at other levels of granularity also, i.e.,
on class or on package level.

A traceability link typically captures the relationship of
individual requirements and methods. But, of course, a re-
quirement can be implemented by multiple methods. Thus,
multiple trace links (or short traces) may exist for the same
requirement where each trace relates to a different method.
Furthermore, a method can be implemented by multiple
requirements. Accordingly, multiple traces may exist from
different requirements to the same method. Trace links are
typically captured in the form of a requirements traceability
matrix (RTM), which captures in each cell one traceability
link. RTMs thus contain n*m cells where n is the number of
requirements and m is the number of related code elements
(classes or methods).

TABLE I. EXCERPT OF THE REQUIREMENTS TRACEABILITY MATRIX
(RTM) OF THE VIDEO ON DEMAND SYSTEM

 R0 R2 R10
VODClient.init() X X
ListFrame.buttonControl3_actionPerformed() X X X
ListFrame() X X X
Movie.gettitle() X X
ListFrameListener3.actionPerformed() X

Table 1 depicts an excerpt of such a RTM for the VoD

system, one of the three case study systems we will discuss
later (see Section IV). VOD, which stands for Video-on-
Demand system [12], supports basic operations such as se-
lecting a movie from a server, playing that movie, pausing it,
etc. The VoD system is only about 3.6 KLOC in size and the
smallest of the three systems we analyzed. However, being
an intuitive system, we use excerpts of VoD throughout this
paper as an illustration. The RTM in Table 1 depicts a few
methods (rows) and a few requirements (columns). An ‘X’ in
a cell indicates a trace between the cell’s requirement and the
cell’s method. A blank in the cell indicates a no-trace. For
example, R2 is the requirement “Users should be able to
display textual information about a selected movie.” In Table
1, method VODClient.init() does not trace to require-
ment R2; however methods such as the ListFrame’s con-

structor do. While the method VODClient.init() does not
contribute to the implementation of R2, it does trace to re-
quirements R0 and R10.

B. Capturing Dependencies Between Traced Methods

There are two general ways in which methods can be de-
pendent upon another: (1) calling each other and (2) sharing
data. Calling means that the source code of one method con-
tains a call to the other method. Figure 1 shows an excerpt of
the VoD source code, covering three Java methods: VOD-
Client’s init(), the constructor of ListFrame, and one
of ListFrame’s event handler buttonControl3_
actionPerformed(). In method init(), the object server
of type ServerReq is initialized. Then this object is passed
to the constructor of the ListFrame class and there assigned
to the ListFrame field ser. Finally, the event handler but-
tonControl3_actionPerformed() accesses the same
field ser. The fact that VODClient’s init() instantiates a
ListFrame’s object is essentially a method call onto
ListFrame’s constructor. However, neither VOD-
Client.init() nor ListFrame’s constructor call the
method buttonControl3_actionPerformed().

Figure 1. Code snippets of the Video on Demand system.

Sharing data means that two or more methods manipulate
or read variables that point to the same data in (physical)
memory irrespective as to whether the variables through
which the data is accessed are the same. This complex for-
mulation is necessary as the same underlying data is often
accessed through references or even chains of references that
in a simple static analysis would appear independent. Figure
1 shows an example that demonstrates such a situation.
There is an obvious data dependency between the two List
Frame methods because both access the ser field even
though we do not find method calls between them. This data
dependency is easily recognizable. Not easy to recognize is
the data dependency between VODClient’s init() and
ListFrame’s buttonControl3_actionPerformed().
Neither accesses the same fields. However, the local server

class VODClient
 public final void init()
 …
 server = new ServerReq("127.0.0.1", s);
 server.connect();
 listframe = new ListFrame(server, this);

class ListFrame
 public ListFrame(ServerReq serverReq,

VODClient vODClient)
 …
 ser = serverReq;
 parent = vODClient;
 …

 void buttonControl3_actionPerformed(…)
 …
 String s = listControl1.getSelectedItem();
 if (s != null){
 Movie movie = ser.getmovie(s);
 …

variable defined in VODClient’s init() method is even-
tually passed to ListFrame’s constructor as a parameter
where it is stored as ser. The variables server and ser
thus point to the same data in memory. Thus, all three me-
thods access or manipulate the same underlying data object
and this implies that all three methods are data dependent
upon another. Such data dependencies can help to reveal
traceability, because data dependencies much like control
dependencies help identify related functionality.

III. RESEARCH QUESTIONS

It has been argued that requirements are typically imple-
mented in methods that directly or indirectly communicate
(so-called requirements regions [10]). However, in previous
work, only method call dependencies were used to under-
stand communication. The goal of our work is to evaluate the
usefulness of method data dependencies for understanding
requirement traces. We are interested in their usefulness in
general and in relation to method call dependencies. Accord-
ing to that goal, we formulated five research questions:

1) Are method call dependencies relevant for evaluating
requirements traces?

2) Are method data dependencies relevant for evaluating
requirements traces?

3) Are method call dependencies more relevant than me-
thod data dependencies for requirements traces?

4) Are method call and method data dependencies com-
plementary to each other in evaluating traces?

5) Are additional code characteristics relevant for eva-
luating requirements traces?

We will investigate these research questions on three dif-
ferent software systems (next section) and will discuss re-
sults in Section VI.

TABLE II. INFORMATION ON THE THREE EVALUATED SYSTEMS

 Video on
Demand

Gantt
Project

JHot-
Draw

Version – 2.0.9 7.2
Programming language Java Java Java
KLOC 3.6 45 72
Executed methods 169 2930 1668
Evaluated requirements 12 17 21
Number of methods imple-
menting a requirement (avg.)

11–152
(46)

79–932
(405)

9–515
(126)

Size of the golden RTM 2028 49810 35028
Requirements traces 560 6892 2424
Random chance of guessing 0.5–7.4% 0.1–1.8% 0.02–1.4%
Method call dependencies 222 5560 3943
Method data dependencies 899 24243 14555

IV. EVALUATED SOFTWARE SYSTEMS

Our evaluation is based on three real-world software sys-
tems: VideoOnDemand (VoD), GanttProject, and JHotDraw.
Table 2 lists basic metrics about the three systems. We chose
these systems because of the availability of requirements
specifications and, more significantly, high quality require-
ments-to-code traces. The three open-source projects are of
different size and of different application domains. The sys-

tems cover about 120 KLOC and we randomly selected 50
requirements from their respective requirements specifica-
tion for our evaluation purposes. Our focus on a subset of the
requirements does not affect the validity of the findings
discussed later because each requirement was evaluated
individually. Even though many methods implemented mul-
tiple requirements, it is possible to investigate each require-
ment separately. As can be seen from Table 2, the require-
ments were diverse in size, being implemented in between
0.02-7.4% of the code (measured by the number of methods).

A. Capturing of Requirements Traces

Having available a high quality gold standard for re-
quirements traces is essential for this work because it is the
goal to understand the relationship between code dependen-
cies and requirements traceability and we would not expect
finding relationships among bad input (garbage-in/garbage-
out). In order to capture high quality traces, we asked the
original developers of the evaluated systems (in case of the
larger systems GanttProject and JHotDraw) or a person who
was very familiar with the system (in case of the smaller
VoD) to generate Requirements-to-Code Trace Matrices
(RTMs). In total, the developers identified 9,876 trace links
among the 50 requirements, with an average of 197 traces
per requirement. Table 2 provides further details. For exam-
ple, we see that the number of methods implementing a giv-
en requirement ranged from 9 methods (smallest) to 932
methods (largest). Most of the requirements were functional
but five of the 50 requirements were non-functional. Exam-
ples of requirements are:

 VoD R6: The system should have a one second max
response time to start playing a movie.

 GanttProject R04: The user should be allowed to add or
remove a task as a subtask to an existing task.

 JHotDraw R11: The user may group shapes into more
complex shapes. Grouped shapes should be allowed to
be ungrouped.

While the requirements were very diverse, Table 2 also
reveals that their traces are very unlikely to be guessed. If we
were to take a method and randomly choose its requirement
then we would only be between 0.02–7.4% likely to correct-
ly guess the requirement the method implements (number of
requirements traces divided by the size of the RTM). For any
automation to be useful, it would have to significantly im-
prove on this random chance.

B. Capturing of Method Call and Data Dependencies

We discussed above that we need high-quality traces to
understand the relationship between code dependencies and
traces. The same is true for code dependencies. If the method
call and data dependencies were of poor quality, we would
not expect finding any relationship among these beyond the
random chance of correctness identified above. We now
focus on how we captured method call dependencies and
data dependencies with high quality.

Method call and method data dependencies can be cap-
tured through static and/or dynamic program analysis. How-
ever, existing state-of-the-art technologies are not without

problems. There could be wrong calling dependencies or
missing calling dependencies if the technology were to iden-
tify incorrect calls (=wrong) or failed to identify calls
(=missing). Likewise, there could be wrong data dependen-
cies and missing data dependencies. The problem with state-
of-the-art static analysis techniques is that they generally err
on all sides. If the call and data dependencies were roughly
equally wrong or missing then this might still allows us to
investigate our five research questions; however; there is no
guarantee that this is the case. And it would be hard to argue
on the effects of wrong and missing dependencies in context
of requirements traceability. Indeed, we believe that the
static analysis for data dependencies is far less reliable than
the static analysis of call dependencies because they are hard
to detect and track (e.g., points-to analysis [11]). If we were
to use static analysis techniques, we thus would require ma-
nual investigation to improve the quality of these captured
call and data dependencies. Table 2 reveals that we identified
9,725 call dependencies (method calls) and 39697 data de-
pendencies across the three systems and manually validating
all of them would have been infeasible.

We thus relied on dynamic analysis, which required us to
execute the software system and observing method call de-
pendencies and method data dependencies. Dynamic analysis
is guaranteed to neither cause false call dependencies nor
false data dependencies because it observes what actually
happens in the executed system rather than trying to guess it.
However, dynamic analysis does not guarantee complete call
and data dependencies because only those code dependencies
are observed that were actually triggered during the execu-
tion of the system. The degree of completeness is thus a
factor of the completeness of the test data. To minimize this
problem, we performed exhaustive testing on the three eva-
luated systems. While exhaustive testing can minimize the
problem of missing call and data dependencies, it cannot
prevent it. However, we believe that missing dependencies
are not so much a problem for as long as call and data de-
pendencies are missing in a roughly equal ratio. This appears
to be true since incomplete testing does not appear to favor
the one over the other. We thus believe that the code depen-
dencies are overall high quality for both calls and data.

Instrumented JVM

User Application

JVMTI

Graph for
Analysis

Local Database

Events

Method
Exit Field

Access

Field
Modification

Post Processing

Method Data
Dependencies

Method-Using-Data
Records

Figure 2. The approach of capturing method data dependencies.

There are ample technologies for observing method calls
at runtime. For example, in Java any runtime profiler or
debugger could do this job (e.g., TPTP). However, existing
technologies for dynamic analysis do not focus on data shar-
ing between methods. The focus on methods is important
here because traceability is typically provided on code level
such as classes or methods and not on fields or variables and
thus technologies for understanding data sharing among
variables is not sufficient for our purpose.

We thus developed a prototype, which automatically ob-
served method calls and data sharing among the methods.
Currently, our tool is based on Java because of its reliance on
the Java JDK, which provides an easy and reliable interface
for recoding method calls at runtime. We built our work
upon our previous work [3] on capturing method call depen-
dencies at runtime. However, since we were unable to find a
tool for capturing data dependencies at the level of detail
described above, we extended our approach as illustrated in
Fig. 2. We are using JVMTI (Java Virtual Machine Tool
Interface), which provides both a way to inspect the state of a
system (i.e., its data) and control the execution of a system
while it is running in the Java virtual machine (JVM). A
client of JVMTI can be registered in interesting occurrences
through events that JVM generates. The client can then
query and control the target application through JVMTI,
either in response to events or independent of them. Natural-
ly, our technology is restricted to Java and hence all three
evaluated systems are Java systems. However, our observa-
tions should be generalizable to other programming languag-
es because they are based on programming concepts that are
similar across most modern programming languages (i.e.,
Java, .NET, Ada, etc.).

To capture method data dependencies, we were interested
in three JVMTI events particularly: field access, field mod-
ification, and method exit. In Java, variables can only be
created as fields inside a class or as local variables inside a
method. The field access and field modification events tell us
when a field is accessed or modified by a method at runtime.
The method exit event allows us to inspect local variables
(including parameters and return values) a method created in
order to further investigate data dependencies.

For our work, it is important to go beyond shared va-
riables because true data dependencies exist if two methods
indeed have access to the very same data, even if the data are
referenced by different variables. Two methods thus have a
data dependency if both methods access and/or manipulate
variables that point to the same data in memory. With the
help of JNI (Java Native Interface) and JVMTI, we can lo-
cate actual objects in the Java heap that are pointed to by the
variable references (we discuss how to handle static data and
Java primitive types in Section VIII). JVMTI also provides a
key function for our approach called GetObject
HashCode() which retrieves a unique1 identifier of a Java
object in memory. Accordingly, we compute separate me-
thod-using-data records for each method. The following
examples show four such method-using-data records that we

1 Claimed by JVMTI, however, possibly incorrect which is a tech-
nical problem we need to address in future work.

captured for the Video on Demand method discussed earlier
(“-init-” refers to the constructor of a Java class):

 VODClient.init() accesses a field in the VOD-
Client class named server, which is of type Ser-
verReq and is uniquely identified by the hash code
13986615

 ListFrame.-init-() declares one of its parameters
to be ListFrame.-init-().serverReq, which is of
type ServerReq and is uniquely identified by the hash
code 13986615

 ListFrame.-init-() modifies the field NewValue of
type ServerReq in the object server of type
ListFrame, which is uniquely identified by the hash
code 13986615

 ListFrame.buttonControl3_actionPerformed()
accesses the field ListFrame.ser, which is of type
ServerReq and uniquely identified by the hash code
13986615

By comparing the hash code, data dependencies among
the three methods: ListFrame.-init-(),
ListFrame.buttonControl3_actionPerformed(),
and VODClient.init() can be identified. In order to
make sure that captured method data dependencies are cor-
rect, we manually inspected the source code of numerous
methods and improved the developed technology according-
ly. In result, we are confident that our technology captures
high quality method call dependencies and method data
dependencies. The overhead of capturing call and data de-
pendencies by running test cases for each case study system
is a one-time cost and was not unreasonable (20 mins for
VoD, 1.5 hours for JHotDraw, 3 hours for Gantt).

Figure 3. Overview of the proposed framework.

V. PROPOSED FRAMEWORK

The captured method dependencies can now be used to
assess the quality of requirements traces on methods. Fig-
ure 3 depicts the proposed framework for the evaluation and
recommendation process. We analyzed each software system
separately. First, we built a graph structure called CDGraph
(Call-Data Dependency Graph). This graph structure com-
bines the captured method call dependencies, the method
data dependencies, and the requirements-to-code traces from

the gold standard RTM. Second, we explored various algo-
rithms for computing trace recommendations based on the
CDGraph. These recommendations are computed based on
trace information of neighboring methods. Finally, we eva-
luated the correctness of our recommendations by compari-
son with the gold standard RTM. Based on this data, we
answer our research questions. These three steps are ex-
plained in more details in the following subsections.

A. Step 1: Composing the CDGraph

We combine method call dependencies, method data de-
pendencies, and traceability information into a single graph
structure, called the CDGraph. In this graph, one node
represents exactly one method. The edges of this graph
represent captured code dependencies. Figure 4 shows an
excerpt of the CDGraph for the Video on Demand system.
Method call dependencies are annotated as solid arcs with
arrows, while method data dependencies are annotated as
dashed arcs without arrows (these edges are also annotated
with the number of data types any two methods are sharing
which will be discussed in Section VII). Nodes are labeled
with class and method names and annotated with the gold-
standard traceability information from the gold standard
(listed at the bottom). For example, ListFrame.button-
Control3_actionPerformed() contributes to the imple-
mentation of the requirements R0, R2, R10 and R12; it is
called by method ListFameListener3.action-
Performed(); and it shares data with VODClient.init().

Figure 4 shows that method call dependencies and me-
thod data dependencies appear complementary but also over-
lapping. For example, there is only one method call edge
between ListFrame.buttonControl3_action-
Performed() and Detail.setmovie(). Furthermore,
there is only one method data edge between buttonCon-
trol3_actionPerformed() and Movie.gettitle().
However, between buttonControl3_action-
Performed() and ServerReq.getmovie() there are both,
a method call edge and a method data edge.

B. Step 2: Trace Recommendations

We used the call-data dependency graph (there is one for
each evaluated system) to find out whether the method call
dependencies and/or the method data dependencies of any
given method node in the graph correlate with requirements
traces pointing to that node. In order to assess that question,
we implemented several traces recommenders that assess
requirements traces for each node in the captured graph
based on its dependencies to other nodes of the graph and
their related requirements. The following introduces one
such algorithm. We will later describe others.

An intuitive and also simple algorithm counts the neigh-
bors of a node in the graph (neighbors are nodes that are
either reachable by call dependencies or data dependencies).
Some of those neighboring nodes may relate to a certain
requirement and there are those that do not relate to that
requirement. The algorithm then recommends requirements
traces for the evaluated node based on the ratio of neighbors
that relate vs. do not relate to that requirement. We are using
the following algorithm to evaluate traceability between each

requirement in the specification of a system and each ex-
ecuted method in its source code (i.e., each node):

foreach n in graph {

neighbors = countNeighbors(n);
foreach r in requirementsSpecification {
 tracingNeighbors =
 countTracingNeighbors(n, r);

 if (tracingNeighbors/neighbors > 0.5)
 recommendation(n,r) = ‘trace’;
 else
 recommendation(n,r) = ‘no-trace’;
}

}
In this algorithm, we are using a 50% threshold. That

means that if more than 50% of a neighbor’s nodes (aka
dependent methods) are tracing to a certain requirement then
it is very likely that the node itself is also part of the re-
quirements implementation. We are using the example graph
shown in Fig. 4 to demonstrate this recommendation process.
The figure shows the method buttonControl3_action
Performed() of class ListFrame in the center and its
neighbors around. In order to compute recommendations for
this node, we would iterate through each of the 12 require-
ments in the specification. For the first requirement R0, we
find that 86% of the node’s neighbors (six out of seven) trace
to R0 and this value is well above the threshold of 50%. That
means that we would recommend a trace to R0 for the eva-
luated method. This recommendation is correct as the eva-
luated method is truly related to R0. This is evident in the
node for buttonControl3_actionPerformed() to also
list R0 as one of its requirements. Do note that we base our
recommendation on the known traces of the neighboring
nodes and not on the node under investigation. Thus, we are
assessing whether the traceability of nodes with call and/or
data dependencies (neighboring nodes) have a correlation to
the traceability of the node itself. Proceeding with this
process, we would eventually recommend traces to R0, R2,

R5, and R12. A comparison with the actually existing traces
in Figure 4 shows that a trace to R5 would be recommended
which is currently missing in node ListFrame.button-
Control3_actionPerformed(), while the trace to R10
would be identified as incorrect though it is currently present
in the node. We refer to these two situations as wrong traces
and missing traces.

C. Step 3: Evaluating the Correctness of Recommendations

In the following section we will discuss the quality of
trace recommendations computed for the three evaluated
systems with the algorithm introduced above.

TABLE III. RESULT TYPES FOR THE VALIDATION OF TRACE
RECOMMENDATION

Computed
Recommendation

Golden
Standard RTM

Validation
Result

Correctness

Trace
Trace

TP Correct
No-Trace FN Incorrect

Trace
No-Trace

FP Incorrect
No-Trace TN Correct

In order to evaluate the correctness of a recommendation,
it is compared with the golden standard. Table 3 shows the
four possible combinations of recommendation and golden
standard value. While TP (True Positive) and TN (True Neg-
ative) refer to correctly recommended traces and non-traces,
a FN (False Negative) refers to a missing trace and a FP
(False Positive) refers to a wrong trace. For each evaluated
system, we count how often each of the four validation re-
sults occurs. These figures are provided in the next section.
The reason for splitting recommendations of traced and non-
traced nodes is that for a typical system the RTM is very
sparse and the number of traces compared to non-traces is
very low. The splitting allows understanding where false
recommendations are made with a particular emphasis on
trace recommendations, which is typically the main focus of
related work (see Section IX).

Figure 4. Example of a Call-Data Dependency Graph showing one node and its neighbors related by method call relationships (solid arcs with arrows)

and method data relationships (dashed arcs without arrows). Each node identifies the requirements it traces to (labels Rx).

The overall incorrectness (combining “trace” and “no-
trace”) is defined as formula (1) and shows the percentage of
correct recommendations in relation to all given recommen-
dations. A value of 0% means that only correct recommenda-
tions are given and a value of 100% means that only incor-
rect recommendations are computed.

The recall is defined as formula (2) and shows the per-
centage of proposed traces (ignoring “no-trace”) in relation
to all recommendations on traced nodes. A value of 100%
means that trace recommendations are complete (none are
missing) as compared to the golden standard RTM.

Finally, the precision is defined as formula (3) and shows
the percentage of correctly proposed traces (ignoring “no-
trace”) in relation to all recommendations on trace nodes. A
value of 100% means that none of the trace recommenda-
tions are wrong as compared to the golden standard RTM.

VI. RESULTS (RESEARCH QUESTIONS REVISITED)

The goal of our work is to understand the relationship be-
tween method call dependencies, method data dependencies,
and requirements traces. In doing so, we primarily focused
on those parts of the code that implement the given require-
ments. This led to roughly 90,000 trace recommendations
computed for the three evaluated software systems.

TABLE IV. NUMBER OF CORRECT AND INCORRECT
RECOMMENDATIONS FOR THE THREE CASE STUDY SYSTEMS

 Correct Incorrect
 TP TN FN FP
Method call dependencies only (Call)
VoD 357 1270 203 198
Gantt Project 4173 41235 2719 1683
JHotDraw 1220 32099 1204 505
Method data dependencies only (Data)
VoD 435 1413 125 55
Gantt Project 2375 42326 4517 592
JHotDraw 973 32404 1451 200
Method call and method data dependencies (Call+Data)
VoD 435 1417 125 51
Gantt Project 4075 42028 2817 890
JHotDraw 1222 32384 1202 220

In order to answer our research questions (see Section III)

we performed three experiments per evaluated system. First,
we computed recommendations on a graph that contained
only method call dependencies (Call Graph). This is the
CDGraph minus all data dependencies. Second, we com-
puted recommendations on a graph that contained only me-
thod data dependencies (Data Graph). This is the CDGraph
minus all call dependencies. Finally, we computed recom-
mendations on a complete CDGraph that contained both
method call and method data dependencies (Call + Data
Graph). Table 4 shows the results of these experiments as
number of correct and incorrect recommendations on nodes
with and without requirements traces.

TABLE V. AGGREGATED METRICS ASSESSING THE COMPUTED
RECOMMENDATIONS FOR THE EVALUATED SYSTEMS (VOD, GANTT, AND
JHOTDRAW) AND FOR THE THREE METHOD DEPENDENCY GRAPHS (CALL,

DATA, AND CALL+DATA)

Incor-

rectness Recall Precision

VoD
Call 19.77% 63.75% 64.33%
Data 8.88% 76.78% 88.78%
Call + Data 8.68% 77.68% 89.51%

Gantt
Project

Call 8.84% 60.55% 71.27%
Data 10.26% 34.46% 75.01%
Call + Data 7.44% 59.13% 82.08%

JHotDraw
Call 4.88% 50.33% 70.73%
Data 4.71% 40.14% 76.34%
Call + Data 4.06% 50.41% 84.75%

Table 5 reports the findings from Table 4 in form of the

introduced metrics: incorrectness, recall, and precision for all
three systems and the three different graphs. The results
shown in these tables are used in the following to answer our
research questions (see Section III).

RQ1: Are method call dependencies relevant for evaluating
requirements traces?

We found that by purely evaluating method call depen-
dencies 4.88% (JHotDraw) to 19.77% (VoD) of the recom-
mendations were incorrect. Given that there are two possible
traceability states (a trace vs. a no-trace), there is 50%
chance of randomly guessing correctly. The result thus
shows a strong relationship between method call dependen-
cies and requirements regions captured by traceability links,
the computed results are far from random guessing. Thus,
method call dependencies are relevant for evaluating re-
quirements traces (RQ1). This observation is in line with
some related work which has been exploiting method call
dependencies (e.g., fan-in/fan-out analysis).

RQ2: Are method data dependencies relevant for evaluating
requirements traces?

We found that by purely evaluating method data depen-
dencies 4.71% (JHotDraw) to 10.26% (Gantt) of the recom-
mendations were incorrect. This result shows that also a
strong relation exists between method data dependencies and
requirements regions. In result, method data relations are
relevant for evaluating requirements traces (RQ2) and sug-
gest that method data dependencies are a viable alternative to
method call dependencies.

RQ3: Are method call dependencies more relevant than
method data dependencies for requirements traces?

For JHotDraw and VoD less incorrect recommendations
are computed based on the graph that only contains method
data dependencies, while for Gantt less incorrect recommen-
dations are computed based on the Call graph. Our results
suggest that method data relations are equally relevant for
evaluating requirements traces (RQ3). However, the key
question is whether there is a combined benefit (next).

RQ4: Are method call and method data dependencies com-
plementary to each other in evaluating traces?

We found that by combining method call dependencies
and method data dependencies into one graph (Call + Data)
only 4.06% (JHotDraw) to 8.68% (VoD) of the computed

recommendations were incorrect. These are the best results
across all three systems, suggesting that method call and
method data dependencies are in fact complementary (RQ4).

If we investigate this further, we notice a strong benefit
for both precision and recall. Looking at Table 5, we notice
that the precision for Call+Data is always far above the pre-
cision for Call or Data individually. The same is true for the
recall (except for Gantt which is nearly the same as the recall
for Call). This suggests that the trace recommendations com-
puted for Call+Data leverage from the strengths of both Call
and Data individually – i.e., Call and Data observations are
complementary. This fact is also observable through Table 6.
It shows: 1) total call edges, 2) total data edges, and 3) total
overlaps where call edge and the data edge cover the same
two nodes. Compared to the totals, we see that the overlaps
are very small.

TABLE VI. OVERLAP BETWEEN CALL AND DATA EDGES IN THE
CDGRAPHS FOR THE THREE CASE STUDY SYSTEMS

 Call Data Overlap
VoD 222 899 66
GanttProject 5560 24243 1042
JHotDraw 3943 14555 893

RQ5: Are additional code characteristics relevant for eva-
luating requirements traces?

After we found that we were able to compute the best
recommendations based on the combined graph (Call + Da-
ta), we started to explore which other factors were influen-
cing the correctness of recommendations. We evaluated
several code metrics on method, class, and package level:
lines of code per method, number of method per class, num-
ber of attributes per class, depth of inheritance tree, afferent
coupling, efferent coupling, and McCabe’s cyclomatic com-
plexity. However, we did not find a correlation between
recommendation mistakes and any of these metrics. On the
surface, it appears that typical code smells do not affect the
relationship between code dependencies and traces.

TABLE VII. PERCENTAGE OF INCORRECT RECOMMENDATIONS IN
RELATION TO PROPERTIES OF EVALUATED METHODS

 Parameters Return Value Is Constructor
with without with without yes no

VoD 8.99% 9.20% 6.10% 9.51% 9.43% 8.46%
GanttProject 9.53% 6.05% 8.43% 6.71% 5.14% 8.09%
JHotDraw 4.40% 3.89% 4.36% 3.88% 2.91% 4.39%

However, we also evaluated the relation between proper-
ties of a method and recommendation mistakes. By proper-
ties of a method we refer to whether the method has parame-
ters or not, whether it has a return value or not, and whether
it is a constructor of a class or not. Though, we found differ-
ences for each studied property (see Table 7), we did not find
a consistent correlation across all three evaluated systems. In
fact, GanttProject and JHotDraw show the same effects,
while Video on Demand shows exactly the opposite effect
for all three properties. This finding requires a deeper analy-
sis with additional evaluated systems. Video on Demand is a
very small system compared to GanttProject and JHotDraw,
suggesting that there might be differences depending on the
size of the system.

Finally, we evaluated whether the number of require-
ments that a method is implementing is related to the number
of incorrect recommendations that were computed for that
method. Figure 5 shows the results of that analysis. For all
three systems we found a strong correlation between both
values. The more requirements a method is implementing,
the more computed trace recommendations are incorrect. In
result, we found that there are additional relevant code cha-
racteristics that should be considered when evaluating re-
quirements traces (RQ5). The observation in Figure 5 con-
firms a known problem that feature interactions are proble-
matic (i.e., the more requirements implement a method, the
more pronounced is the feature interaction problem).

Figure 5. Relation between the number of requirements a method is imple-

menting and its percentage of incorrect trace recommendations.

VII. OTHER TRACE RECOMMENDATION ALGORITHMS

Our focus for this paper was on investigating whether
there are relationships between code dependencies and re-
quirements-to-code traceability, but not on finding the ideal
algorithm that could exploit this relationship. This will be the
focus of future work. For that reason we preferred a simple
algorithm to make trace recommendations. However, we did
test whether other trace recommendation algorithms would
result in the same observations regarding research questions
1-5. We found that the research questions held regardless of
trace recommendation algorithm we applied. The following
briefly summarizes one additional algorithm that refines the
role of data dependencies to illustrate this.

As we discussed in Section V.A, the numbers on data
edges in the CDGraph represent the amount of actual data
types that two methods share. It is intuitive to think that if
two methods share more types of data, they are more likely
to cooperate with each other and are also more likely to trace
to the same requirement. In an attempt to evaluate that hypo-
thesis, we assigned extra weight to both tracingNeighbors
and neighbors in the recommendation algorithm (see Sec-
tion V.B) if at least one neighbor method traces to a given
requirement and both methods share more than one data
types. In fact, if the number of data types that the evaluated
method and the neighbor method share is N, then we as-
signed an extra weight of N-1. For example, in Fig. 4, let’s
set ListFrame.buttonControl3_actionPerformed()
to be the evaluated method. Then this method shares three
data types with its neighbor method ListFrame.-init-().
In giving a trace recommendation for R10, the tracingNeigh-

0

0.1

0.2

0.3

0.4

0.5

0 5 10 15
In
co
rr
e
ct
 r
e
co
m
m
e
n
d
at
io
n
s

p
e
r
m
e
th
o
d
 [
%
]

Number of implemented requirements by method

Gantt

JHD

VoD

bors will be 5 and the neighbors will be 9, so the computed
value for R10 is larger than 0.5 (50%) and the trace recom-
mendation for the evaluated method and R10 would
be ’trace’. This trace is correct according to the golden stan-
dard RTM and improves the earlier problem of a missing
trace.

TABLE VIII. NUMBER OF CORRECT AND INCORRECT
RECOMMENDATIONS USING TWO DIFFERENT ALGORITHMS BASED ON THE

CALL+DATA METHOD DEPENDENCY GRAPH

 Correct Incorrect

TP TN FN FP
Intuitive algorithm in Table 5
VoD 435 1417 125 51
Gantt Project 4075 42028 2817 890
JHotDraw 1222 32384 1202 220
Algorithm counting data types in data edges
VoD 455 1417 105 51
Gantt Project 4141 42011 2751 907
JHotDraw 1249 32362 1175 242

TABLE IX. AGGREGATED METRICS ASSESSING THE COMPUTED
RECOMMENDATIONS USING TWO DIFFERENT ALGORITHMS BASED ON THE

CALL+DATA METHOD DEPENDENCY GRAPH

 Incor-
rectness Recall Precision

VoD
Intuitive 8.68% 77.68% 89.51%
Type Count 7.69% 81.25% 89.93%

Gantt
Project

Intuitive 7.44% 59.13% 82.08%
Type Count 7.34% 60.08% 82.04%

JHotDraw
Intuitive 4.06% 50.41% 84.75%
Type Count 4.05% 51.53% 83.77%

The computed recommendations for the second algo-

rithm show that the amount of data types on each data edge
in the CDGraph can help to provide slightly better trace
recommendations. The improvements of the new algorithm
are small only. However, as we discussed, it was not the goal
of this paper to optimize the recommendation but rather to
make sure that different recommendation algorithms repli-
cate our findings discussed above. We thus tried a range of
other algorithms also with the same basic observations dis-
cussed earlier.

VIII. THREATS TO VALIDITY

A possible threat to validity is the possible incomplete-
ness of code dependencies (as in missing calls and data de-
pendencies). We did aim to cover all code that implemented
the requirements we analyzed. However, incompleteness is a
likely fact though we believe it is not a serious threat because
call and data dependencies would have equally “suffered”
from this problem and our goal was the comparison of both.

As discussed in Section V, we first collected method-
using-data records at runtime and then capture method data
dependencies by comparing the hash code value of objects
that are pointed to by the variables in those records. We
faced the problem of handling data records without a unique
identifier, such as static fields (static variables can only be
declared as fields in Java) and local variables of Java primi-
tive types (e.g., int, double, boolean, etc.). Static fields are
easy to identify because a static field is initialized only once

when its owner class is loaded and this field can be accessed
directly by the class name and does not need any object. So
we simply use the type of this field, the name of this field,
and the name of the class where this static field is declared to
identify a given static field (including static fields with pri-
mitive types). For a given non-static field with primitive
types, we can first locate the object that owns this field via
its hash code value and then identify this field with the type
and name of it inside its owner object. Unfortunately, we
could not find a unique identifier for local variables with
primitive types inside methods.

Although, we were not able to capture all data dependen-
cy due to tool limitations, we did capture enough to demon-
strate the strong benefit of combining call and data depen-
dencies. More data dependencies might have tilted the bal-
ance even stronger in favor of data (affecting research ques-
tion 3 mostly), we doubt that it would have changed the
primary message about the complementary nature of call and
data dependencies.

IX. RELATED WORK

Extracting object-oriented dataflow communication is a
research hotspot and lots of work has been done in this field.
Milanova et al. [5] extended Andersen’s static analysis tech-
nology [11] to extract points-to information (this information
shows which pointers, or heap references, can point to which
variables or storage locations) from Java. In our work, we
use the hash code value, which represents a unique id for
each memory location, to capture data dependencies among
methods. Lienhard et al. [6] analyzed execution traces and
extracted an Object Flow Graph (OFG) in which edges
represent objects, and nodes represent code structures (either
classes or groups of classes). We also generate data edges
between two method nodes in the CDGraph via method-
using-data records, which are collected during runtime.
However, all that work focuses on the relationship among
objects or classes. Instead, our work is particularly concerned
with data dependencies among methods, because we want to
compute trace recommendations on the method level of
source code.

In the last two decades, plenty of efforts have been done
in traceability, especially in requirements-to-code traceability.
Information retrieval, to date the most widely researched
technology identifies trace links based on naming similarities
between source code and software artifacts (including re-
quirements) [7-9]. However, the result of simple keyword
matching is rather low in precision so more sophisticated
technologies are necessary. Zhao et al. [8] proposed an ap-
proach (SNIAFL) using a static representation of the source
code to refine trace links achieved by information retrieval.
Eaddy et al. [9] presented a framework (CERBERUS) that
combines information retrieval, static analysis (similar to the
SNIAFL approach), and dynamic analysis. Hill et al. [14]
used both lexical analysis and call graph exploration in a tool
called Dora to perform software maintenance tasks. This tool
then computes a subset of the call graph relevant to the query,
called a relevant neighborhood. Their work does not rely on
data dependencies but it does show that there is a benefit in
considering larger neighborhoods which would likely benefit

our approach also. McMillan et al. [13] is the only paper
known to us that considers data flow to establish traceability.
However, their data flows are approximated and exhibit false
positives and false negatives. Their conclusion is that data
flows do not appear to have a benefit which is contradictory
to our observations. This might be due to the FP/FN problem
which needs to be explored in future work. All of these ap-
proaches [7-9, 13, 14] use either control flow and/or data
flow message to improve the quality of the trace recovery
process based on information retrieval and lay the ground of
understanding the relationship between traces and method
communications such as method calling relationship and
method-data-sharing. Yet, our focus was not on automatical-
ly identifying new traces. Instead we are focusing on whether
call and data dependencies are helpful in assessing require-
ments-to-code traceability.

In earlier work [10], we focused only on calling depen-
dencies between methods in order to identify regions in the
source code that implement a given requirement. We found
that requirements truly were implemented in connected areas
of the source code rather than distributed. In a follow-on
publication [3] we introduced a surroundness property to
requirements regions. In the publication, we found that a
given method typically shares the same traces to require-
ments as its neighbor methods, identified by method calls. In
this work we built upon those previous observations and
introduced additional method data dependencies in order to
identify an even more relevant set of neighbors per method,
compared to only analyzing method call dependencies. We
showed that these two kinds of method dependencies are
complementary to each other and help to better understand
where a requirement is implemented in the source code.

X. CONCLUSIONS

In this paper, we investigated the question of whether me-
thod data dependencies are similarly related to requirements
as method call dependencies. For example, if two methods
do not call one another, but do have access to the same data
then is this information relevant? We formulated several
research questions and validated them on three large soft-
ware systems, covering about 120 KLOC. Our findings are
that method data dependencies are equally related to re-
quirements as method call dependencies. But, most interes-
tingly, our analyses show that method data dependencies
complement method call dependencies. That means by eva-
luating both we reached the best understanding of how a
method is related to a requirement. These findings have
strong implications on all forms of code understanding, in-
cluding trace capture, maintenance, and validation tech-
niques. For example, we believe that common information
retrieval approaches in traceability can and should be aug-
mented with knowledge on call and data dependencies. We
also believe that other research directions such as program
understanding would benefit from the combined knowledge
of call and data dependencies. This work thus benefits the
research community to encourage further research in com-
bining call and data dependencies. The tool for capturing
data dependencies is available at http://www.sea.jku.at/tools.

ACKNOWLEDGMENTS

We gratefully acknowledge support from the Joint-
Training PhD Program of the Chinese Scholarship Council
(CSC): 2011619048, the Austrian Science Fund (FWF)
grants P23115-N23 and M1268-N23, the National Natural
Science Foundation of China (NSFC) grants 61021062 and
61003019, the 973 Program of China grant 2009CB320702,
and the U.S. NSF MRI grant 1126747.

REFERENCES
[1] B. Dit, Revelle, M. Gethers, and D. Poshyvanyk, “Feature Location in

Source Code: A Taxonomy and Survey”, Journal of Software Main-
tenance and Evolution: Research and Practice (JSME), 2011

[2] M. Marin, A. V. Deursen, and L. Moonen. Identifying crosscutting
concerns using Fan-In analysis. ACM Transactions on Software En-
gineering and Methodology (TOSEM), 17(1), pp. 3:1-3:37, 2007

[3] A. Ghabi, A. Egyed. "Observations on the connectedness between
requirements-to-code traces and calling relationships for trace valida-
tion," 26th International Conference on Automated Software Engi-
neering (ASE),Lawrence, Kansas, 2011, pp.416-419.

[4] C. McMillan, D. Poshyvanyk, and M. Revelle, "Combining Textual
and Structural Analysis of Software Artifacts for Traceability Link
Recovery," in ICSE Workshop on Traceability in Emerging Forms of
Software Engineering (TEFSE), Vancouver, Canada, 2009, pp. 41-48.

[5] A. Milanova, A. Rountev, and B. G. Ryder. “Parameterized Object
Sensitivity for Points-To Analysis for Java”. ACM Transactions on
Software Engineering and Methodology, 14(1), pp. 1-41, 2005.

[6] A. Lienhard, S. Ducasse, and T. Gîrba. “Taking an object-centric
view on dynamic information with object flow analysis”. Journal of
Computer Languages, Systems and Structures (COMLAN), 35(1),
pp.63-79, 2009.

[7] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo,
"Recovering Traceability Links between Code and Documentation",
IEEE Transactions on Software Engineering(TSE), 28(10), pp. 970-
983, 2002.

[8] W. Zhao, L. Zhang, Y. Liu, J. Sun, and F. Yang, "SNIAFL: Towards
a Static Noninteractive Approach to Feature Location," ACM Trans-
actions on Software Engineering and Methodology (TOSEM), 15(2),
pp. 195-226, 2006.

[9] A. V. A. Marc Eaddy, Giuliano Antoniol, Yann-Gaël Guéhéneuc,
"CERBERUS: Tracing Requirements to Source Code Using Informa-
tion Retrieval, Dynamic Analysis, and Program Analysis," in 16th
IEEE International Conference on Program Comprehension (ICPC),
Amsterdam, The Netherlands, 2008, pp. 53-62.

[10] B. Burgstaller and A. Egyed, “Understanding where requirements are
implemented”, in 26th IEEE International Conference on Software
Maintenance (ICSM), Timișoara, Romania, 2010, pp. 1-5.

[11] L. O. Andersen. “Program Analysis and Specialization for the C
Programming Language”. PhD thesis, DIKU, University of Copenha-
gen, 1994.

[12] D. Kim and J. Kim, "Design and implementation of a Java-based
MPEG-1 video decoder,", IEEE Transactions on Consumer
Electronics, 45(4), pp. 1176-1182, 1999.

[13] McMillan, C.; Grechanik, M.; Poshyvanyk, D.; Fu, C.; Xie, Q.; ,
"Exemplar: A Source Code Search Engine For Finding Highly
Relevant Applications," IEEE Transactions on Software Engineering
(TSE), 99, 2011

[14] E. Hill, L. Pollock, K. Vijay-Shanker, "Exploring the Neighborhood
with Dora to Expedite Software Maintenance", in the 22th IEEE/ACM
international conference on Automated software engineering (ASE),
Atlanta, Georgia, 2007, pp. 14-23.

