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Abstract—It is common practice for requirements traceability 
research to consider method call dependencies within the 
source code (e.g., fan-in/fan-out analyses). However, current 
approaches largely ignore the role of data. The question this 
paper investigates is whether data dependencies have similar 
relationships to requirements as do call dependencies. For 
example, if two methods do not call one another, but do have 
access to the same data then is this information relevant? We 
formulated several research questions and validated them on 
three large software systems, covering about 120 KLOC. Our 
findings are that data relationships are roughly equally rele-
vant to understanding the relationship to requirements traces 
than calling dependencies. However, most interestingly, our 
analyses show that data dependencies complement call depen-
dencies. These findings have strong implications on all forms of 
code understanding, including trace capture, maintenance, and 
validation techniques (e.g., information retrieval). 

Keywords- requirements traceability; feature location; source 
code dependencies; program analysis; method call dependencies; 
method data dependencies; 

I.  INTRODUCTION 

Requirements traceability refers to the practice of captur-
ing relations between artifacts of a development process as 
traceability links. These links can support stakeholders in 
development-related tasks if they are of high quality. Ensur-
ing high quality traceability links is especially difficult for 
requirements–to-code traces due to typically large numbers 
of required traces and frequent changes to the traced code. 

Requirements traceability research has thus started to fo-
cus on control dependencies within source code in order to 
gain more information on what code elements contribute to 
the implementation of a requirement and to assess whether 
existing traceability relations are correct [1]. Among others, 
researchers use fan-in/fan-out analyses [2], identified typical 
patterns of requirements implementation, [3] and comple-
ment keyword matching techniques on the code with control 
flow analyses [4,9]. All the work we found is based on either 
statically or dynamically analyzing sequences of method 
calls in order to deduct dependencies between methods. 
These analyses, essentially, investigate the callers and callees 
of a method in order to assess traceability between a method 
and a requirement. However, method calls are just one form 

of communication in source code. Only few current ap-
proaches (e.g., [13]) consider the role of data sharing for 
assessing traceability.  

This paper investigates whether method data dependen-
cies are as relevant as method call dependencies and, if yes, 
whether call and data dependencies are complementary for 
assessing requirements-to-code relationships in alleviating 
each other’s weaknesses. For example, if two methods do not 
call one another, but do have access to the same data then is 
this information relevant? We formulated several research 
questions and validated them on three large software sys-
tems, covering about 120 KLOC. The validation is based on 
the investigation of 4,767 methods in context of 50 require-
ments, resulting in a total of 86,866 assessments.  

To answer the research questions, we considered all me-
thods that were connected by either call or data dependencies 
and for which we had initial requirements-to-code traces.  
For any given method we then used the traces of its neigh-
boring methods to derive a trace recommendation for that 
given method and compared it with the initial trace. These 
initial traces could have been created manually; they could 
be old versions of earlier releases, or automatically generated 
ones. The recommendation is thus never biased by its initial 
trace but solely determined from the initial traces of its 
neighbor methods which makes it useful for activities such 
as trace capture or trace maintenance. These applications are 
explored in future work. 

Our findings are that data relationships have a slightly 
weaker, but still strong relationship to requirements tracea-
bility. But, most interestingly, our analyses show that data 
dependencies complement call dependencies strongly. If we 
separate between precision and recall (i.e., wrong trace rate 
vs. missing trace rate), we find that the combined analysis 
results in the better for the call/data analyses. This observa-
tion is of particular importance because the traceability re-
search community has found that complementary techniques 
usually benefit either precision or recall but not both. These 
findings thus have strong implications on all forms of code 
understanding, including trace capture, maintenance, and 
validation techniques (e.g., information retrieval). 

The remainder of this paper is structured as follows. Sec-
tion II briefly introduces the concepts of requirements tra-
ceability and code dependencies. Section III states our re-
search questions and Section IV introduces the software 978-1-4673-2312-3/12/$31.00 ©2012 IEEE 



systems that we evaluated for answering those questions. 
Section V discusses the developed framework for capturing 
and analyzing code dependencies. Section VI reports the 
results of our experiments and answers the research ques-
tions. In Section VII we discuss possible improvements to 
the applied recommendation algorithm. Section VIII refers to 
limitations of our work. Section IX discusses related work in 
the area of requirements traceability, feature location, and 
program analysis. Finally, Section X concludes and proposes 
the practical implications of this paper. 

II. TRACEABILITY AND CODE DEPENDENCIES 

A. Requirements to Code Traceability 

A traceability link captures where in the source code a 
requirement is implemented. This is similar to feature map-
ping if we think of requirements as features [4,8,9]. In this 
paper we focus on requirements to source code mappings at 
the granularity of methods. However, our observations 
should apply for traces at other levels of granularity also, i.e., 
on class or on package level. 

A traceability link typically captures the relationship of 
individual requirements and methods. But, of course, a re-
quirement can be implemented by multiple methods. Thus, 
multiple trace links (or short traces) may exist for the same 
requirement where each trace relates to a different method. 
Furthermore, a method can be implemented by multiple 
requirements. Accordingly, multiple traces may exist from 
different requirements to the same method. Trace links are 
typically captured in the form of a requirements traceability 
matrix (RTM), which captures in each cell one traceability 
link. RTMs thus contain n*m cells where n is the number of 
requirements and m is the number of related code elements 
(classes or methods). 

TABLE I.  EXCERPT OF THE REQUIREMENTS TRACEABILITY MATRIX 
(RTM) OF THE VIDEO ON DEMAND SYSTEM 

 R0 R2 R10 
VODClient.init() X  X 
ListFrame.buttonControl3_actionPerformed() X X X 
ListFrame() X X X 
Movie.gettitle() X X  
ListFrameListener3.actionPerformed()  X  

 
Table 1 depicts an excerpt of such a RTM for the VoD 

system, one of the three case study systems we will discuss 
later (see Section IV). VOD, which stands for Video-on-
Demand system [12], supports basic operations such as se-
lecting a movie from a server, playing that movie, pausing it, 
etc. The VoD system is only about 3.6 KLOC in size and the 
smallest of the three systems we analyzed. However, being 
an intuitive system, we use excerpts of VoD throughout this 
paper as an illustration. The RTM in Table 1 depicts a few 
methods (rows) and a few requirements (columns). An ‘X’ in 
a cell indicates a trace between the cell’s requirement and the 
cell’s method. A blank in the cell indicates a no-trace. For 
example, R2 is the requirement “Users should be able to 
display textual information about a selected movie.” In Table 
1, method VODClient.init() does not trace to require-
ment R2; however methods such as the ListFrame’s con-

structor do. While the method VODClient.init() does not 
contribute to the implementation of R2, it does trace to re-
quirements R0 and R10.  

B. Capturing Dependencies Between Traced Methods 

There are two general ways in which methods can be de-
pendent upon another: (1) calling each other and (2) sharing 
data. Calling means that the source code of one method con-
tains a call to the other method. Figure 1 shows an excerpt of 
the VoD source code, covering three Java methods: VOD-
Client’s init(), the constructor of ListFrame, and one 
of ListFrame’s event handler buttonControl3_ 
actionPerformed(). In method init(), the object server 
of type ServerReq is initialized. Then this object is passed 
to the constructor of the ListFrame class and there assigned 
to the ListFrame field ser. Finally, the event handler but-
tonControl3_actionPerformed() accesses the same 
field ser. The fact that VODClient’s init() instantiates a 
ListFrame’s object is essentially a method call onto 
ListFrame’s constructor. However, neither VOD-
Client.init() nor ListFrame’s constructor call the 
method buttonControl3_actionPerformed(). 

 

 
Figure 1.  Code snippets of the Video on Demand system. 

Sharing data means that two or more methods manipulate 
or read variables that point to the same data in (physical) 
memory irrespective as to whether the variables through 
which the data is accessed are the same. This complex for-
mulation is necessary as the same underlying data is often 
accessed through references or even chains of references that 
in a simple static analysis would appear independent. Figure 
1 shows an example that demonstrates such a situation. 
There is an obvious data dependency between the two List 
Frame methods because both access the ser field even 
though we do not find method calls between them. This data 
dependency is easily recognizable. Not easy to recognize is 
the data dependency between VODClient’s init() and 
ListFrame’s buttonControl3_actionPerformed(). 
Neither accesses the same fields. However, the local server 

class VODClient 
  public final void init() 
   … 
    server = new ServerReq( "127.0.0.1", s); 
    server.connect(); 
    listframe = new ListFrame(server, this); 

 
class ListFrame 
  public ListFrame(ServerReq serverReq, 

VODClient vODClient) 
  … 
  ser = serverReq; 
  parent = vODClient; 
  … 

 

  void buttonControl3_actionPerformed(…) 
    … 
    String s = listControl1.getSelectedItem(); 
    if (s != null){ 
     Movie movie = ser.getmovie(s); 
  … 



variable defined in VODClient’s init() method is even-
tually passed to ListFrame’s constructor as a parameter 
where it is stored as ser. The variables server and ser 
thus point to the same data in memory. Thus, all three me-
thods access or manipulate the same underlying data object 
and this implies that all three methods are data dependent 
upon another. Such data dependencies can help to reveal 
traceability, because data dependencies much like control 
dependencies help identify related functionality. 

III. RESEARCH QUESTIONS 

It has been argued that requirements are typically imple-
mented in methods that directly or indirectly communicate 
(so-called requirements regions [10]). However, in previous 
work, only method call dependencies were used to under-
stand communication. The goal of our work is to evaluate the 
usefulness of method data dependencies for understanding 
requirement traces. We are interested in their usefulness in 
general and in relation to method call dependencies. Accord-
ing to that goal, we formulated five research questions: 

 

1) Are method call dependencies relevant for evaluating 
requirements traces? 

2) Are method data dependencies relevant for evaluating 
requirements traces? 

3) Are method call dependencies more relevant than me-
thod data dependencies for requirements traces? 

4) Are method call and method data dependencies com-
plementary to each other in evaluating traces? 

5) Are additional code characteristics relevant for eva-
luating requirements traces? 

 
 

We will investigate these research questions on three dif-
ferent software systems (next section) and will discuss re-
sults in Section VI. 

TABLE II.  INFORMATION ON THE THREE EVALUATED SYSTEMS 

 Video on 
Demand 

Gantt 
Project 

JHot-
Draw 

Version – 2.0.9 7.2 
Programming language  Java Java Java 
KLOC  3.6 45 72 
Executed methods  169 2930 1668 
Evaluated requirements  12 17 21 
Number of methods imple-
menting a requirement (avg.) 

11–152 
(46) 

79–932 
(405) 

9–515 
(126) 

Size of the golden RTM 2028 49810 35028 
Requirements traces 560 6892 2424 
Random chance of guessing  0.5–7.4% 0.1–1.8% 0.02–1.4%
Method call dependencies 222 5560 3943 
Method data dependencies 899 24243 14555 

IV. EVALUATED SOFTWARE SYSTEMS 

Our evaluation is based on three real-world software sys-
tems: VideoOnDemand (VoD), GanttProject, and JHotDraw. 
Table 2 lists basic metrics about the three systems. We chose 
these systems because of the availability of requirements 
specifications and, more significantly, high quality require-
ments-to-code traces. The three open-source projects are of 
different size and of different application domains. The sys-

tems cover about 120 KLOC and we randomly selected 50 
requirements from their respective requirements specifica-
tion for our evaluation purposes. Our focus on a subset of the 
requirements does not affect the validity of the findings 
discussed later because each requirement was evaluated 
individually. Even though many methods implemented mul-
tiple requirements, it is possible to investigate each require-
ment separately. As can be seen from Table 2, the require-
ments were diverse in size, being implemented in between 
0.02-7.4% of the code (measured by the number of methods). 

A. Capturing of Requirements Traces 

Having available a high quality gold standard for re-
quirements traces is essential for this work because it is the 
goal to understand the relationship between code dependen-
cies and requirements traceability and we would not expect 
finding relationships among bad input (garbage-in/garbage-
out). In order to capture high quality traces, we asked the 
original developers of the evaluated systems (in case of the 
larger systems GanttProject and JHotDraw) or a person who 
was very familiar with the system (in case of the smaller 
VoD) to generate Requirements-to-Code Trace Matrices 
(RTMs). In total, the developers identified 9,876 trace links 
among the 50 requirements, with an average of 197 traces 
per requirement. Table 2 provides further details. For exam-
ple, we see that the number of methods implementing a giv-
en requirement ranged from 9 methods (smallest) to 932 
methods (largest). Most of the requirements were functional 
but five of the 50 requirements were non-functional. Exam-
ples of requirements are: 

 

 VoD R6: The system should have a one second max 
response time to start playing a movie. 

 GanttProject R04: The user should be allowed to add or 
remove a task as a subtask to an existing task. 

 JHotDraw R11: The user may group shapes into more 
complex shapes. Grouped shapes should be allowed to 
be ungrouped. 

 

While the requirements were very diverse, Table 2 also 
reveals that their traces are very unlikely to be guessed. If we 
were to take a method and randomly choose its requirement 
then we would only be between 0.02–7.4% likely to correct-
ly guess the requirement the method implements (number of 
requirements traces divided by the size of the RTM). For any 
automation to be useful, it would have to significantly im-
prove on this random chance. 

B. Capturing of Method Call and Data Dependencies 

We discussed above that we need high-quality traces to 
understand the relationship between code dependencies and 
traces. The same is true for code dependencies. If the method 
call and data dependencies were of poor quality, we would 
not expect finding any relationship among these beyond the 
random chance of correctness identified above. We now 
focus on how we captured method call dependencies and 
data dependencies with high quality. 

Method call and method data dependencies can be cap-
tured through static and/or dynamic program analysis. How-
ever, existing state-of-the-art technologies are not without 



problems. There could be wrong calling dependencies or 
missing calling dependencies if the technology were to iden-
tify incorrect calls (=wrong) or failed to identify calls 
(=missing). Likewise, there could be wrong data dependen-
cies and missing data dependencies. The problem with state-
of-the-art static analysis techniques is that they generally err 
on all sides. If the call and data dependencies were roughly 
equally wrong or missing then this might still allows us to 
investigate our five research questions; however; there is no 
guarantee that this is the case. And it would be hard to argue 
on the effects of wrong and missing dependencies in context 
of requirements traceability. Indeed, we believe that the 
static analysis for data dependencies is far less reliable than 
the static analysis of call dependencies because they are hard 
to detect and track (e.g., points-to analysis [11]). If we were 
to use static analysis techniques, we thus would require ma-
nual investigation to improve the quality of these captured 
call and data dependencies. Table 2 reveals that we identified 
9,725 call dependencies (method calls) and 39697 data de-
pendencies across the three systems and manually validating 
all of them would have been infeasible.  

We thus relied on dynamic analysis, which required us to 
execute the software system and observing method call de-
pendencies and method data dependencies. Dynamic analysis 
is guaranteed to neither cause false call dependencies nor 
false data dependencies because it observes what actually 
happens in the executed system rather than trying to guess it. 
However, dynamic analysis does not guarantee complete call 
and data dependencies because only those code dependencies 
are observed that were actually triggered during the execu-
tion of the system. The degree of completeness is thus a 
factor of the completeness of the test data. To minimize this 
problem, we performed exhaustive testing on the three eva-
luated systems. While exhaustive testing can minimize the 
problem of missing call and data dependencies, it cannot 
prevent it. However, we believe that missing dependencies 
are not so much a problem for as long as call and data de-
pendencies are missing in a roughly equal ratio. This appears 
to be true since incomplete testing does not appear to favor 
the one over the other. We thus believe that the code depen-
dencies are overall high quality for both calls and data. 

 

Instrumented JVM

User Application

JVMTI

Graph for 
Analysis

Local Database

Events

Method 
Exit Field 

Access

Field 
Modification

Post Processing

Method Data 
Dependencies

Method-Using-Data 
Records

 
Figure 2.  The approach of capturing method data dependencies. 

There are ample technologies for observing method calls 
at runtime. For example, in Java any runtime profiler or 
debugger could do this job (e.g., TPTP). However, existing 
technologies for dynamic analysis do not focus on data shar-
ing between methods. The focus on methods is important 
here because traceability is typically provided on code level 
such as classes or methods and not on fields or variables and 
thus technologies for understanding data sharing among 
variables is not sufficient for our purpose.  

We thus developed a prototype, which automatically ob-
served method calls and data sharing among the methods. 
Currently, our tool is based on Java because of its reliance on 
the Java JDK, which provides an easy and reliable interface 
for recoding method calls at runtime. We built our work 
upon our previous work [3] on capturing method call depen-
dencies at runtime. However, since we were unable to find a 
tool for capturing data dependencies at the level of detail 
described above, we extended our approach as illustrated in 
Fig. 2. We are using JVMTI (Java Virtual Machine Tool 
Interface), which provides both a way to inspect the state of a 
system (i.e., its data) and control the execution of a system 
while it is running in the Java virtual machine (JVM). A 
client of JVMTI can be registered in interesting occurrences 
through events that JVM generates. The client can then 
query and control the target application through JVMTI, 
either in response to events or independent of them. Natural-
ly, our technology is restricted to Java and hence all three 
evaluated systems are Java systems. However, our observa-
tions should be generalizable to other programming languag-
es because they are based on programming concepts that are 
similar across most modern programming languages (i.e., 
Java, .NET, Ada, etc.).  

To capture method data dependencies, we were interested 
in three JVMTI events particularly: field access, field mod-
ification, and method exit. In Java, variables can only be 
created as fields inside a class or as local variables inside a 
method. The field access and field modification events tell us 
when a field is accessed or modified by a method at runtime. 
The method exit event allows us to inspect local variables 
(including parameters and return values) a method created in 
order to further investigate data dependencies.  

For our work, it is important to go beyond shared va-
riables because true data dependencies exist if two methods 
indeed have access to the very same data, even if the data are 
referenced by different variables. Two methods thus have a 
data dependency if both methods access and/or manipulate 
variables that point to the same data in memory. With the 
help of JNI (Java Native Interface) and JVMTI, we can lo-
cate actual objects in the Java heap that are pointed to by the 
variable references (we discuss how to handle static data and 
Java primitive types in Section VIII). JVMTI also provides a 
key function for our approach called GetObject 
HashCode() which retrieves a unique1 identifier of a Java 
object in memory. Accordingly, we compute separate me-
thod-using-data records for each method. The following 
examples show four such method-using-data records that we 

                                                           
1 Claimed by JVMTI, however, possibly incorrect which is a tech-
nical problem we need to address in future work. 



captured for the Video on Demand method discussed earlier 
(“-init-” refers to the constructor of a Java class): 

 

 VODClient.init() accesses a field in the VOD-
Client class named server, which is of type Ser-
verReq and is uniquely identified by the hash code 
13986615 

 ListFrame.-init-() declares one of its parameters 
to be ListFrame.-init-().serverReq, which is of 
type ServerReq and is uniquely identified by the hash 
code 13986615 

 ListFrame.-init-() modifies the field NewValue of 
type ServerReq in the object server of type 
ListFrame, which is uniquely identified by the hash 
code 13986615 

 ListFrame.buttonControl3_actionPerformed() 
accesses the field ListFrame.ser, which is of type 
ServerReq and uniquely identified by the hash code 
13986615 

 

By comparing the hash code, data dependencies among 
the three methods: ListFrame.-init-(), 
ListFrame.buttonControl3_actionPerformed(), 
and VODClient.init() can be  identified. In order to 
make sure that captured method data dependencies are cor-
rect, we manually inspected the source code of numerous 
methods and improved the developed technology according-
ly. In result, we are confident that our technology captures 
high quality method call dependencies and method data 
dependencies. The overhead of capturing call and data de-
pendencies by running test cases for each case study system 
is a one-time cost and was not unreasonable (20 mins for 
VoD, 1.5 hours for JHotDraw, 3 hours for Gantt). 

 

 
Figure 3.  Overview of the proposed framework. 

V. PROPOSED FRAMEWORK 

The captured method dependencies can now be used to 
assess the quality of requirements traces on methods. Fig-
ure 3 depicts the proposed framework for the evaluation and 
recommendation process. We analyzed each software system 
separately. First, we built a graph structure called CDGraph 
(Call-Data Dependency Graph). This graph structure com-
bines the captured method call dependencies, the method 
data dependencies, and the requirements-to-code traces from 

the gold standard RTM. Second, we explored various algo-
rithms for computing trace recommendations based on the 
CDGraph. These recommendations are computed based on 
trace information of neighboring methods. Finally, we eva-
luated the correctness of our recommendations by compari-
son with the gold standard RTM. Based on this data, we 
answer our research questions. These three steps are ex-
plained in more details in the following subsections. 

A. Step 1: Composing the CDGraph 

We combine method call dependencies, method data de-
pendencies, and traceability information into a single graph 
structure, called the CDGraph. In this graph, one node 
represents exactly one method. The edges of this graph 
represent captured code dependencies. Figure 4 shows an 
excerpt of the CDGraph for the Video on Demand system. 
Method call dependencies are annotated as solid arcs with 
arrows, while method data dependencies are annotated as 
dashed arcs without arrows (these edges are also annotated 
with the number of data types any two methods are sharing 
which will be discussed in Section VII). Nodes are labeled 
with class and method names and annotated with the gold-
standard traceability information from the gold standard 
(listed at the bottom). For example, ListFrame.button-
Control3_actionPerformed() contributes to the imple-
mentation of the requirements R0, R2, R10 and R12; it is 
called by method ListFameListener3.action-
Performed(); and it shares data with VODClient.init(). 

Figure 4 shows that method call dependencies and me-
thod data dependencies appear complementary but also over-
lapping. For example, there is only one method call edge 
between ListFrame.buttonControl3_action-
Performed() and Detail.setmovie(). Furthermore, 
there is only one method data edge between buttonCon-
trol3_actionPerformed() and Movie.gettitle(). 
However, between buttonControl3_action-
Performed() and ServerReq.getmovie() there are both, 
a method call edge and a method data edge. 

B. Step 2: Trace Recommendations 

We used the call-data dependency graph (there is one for 
each evaluated system) to find out whether the method call 
dependencies and/or the method data dependencies of any 
given method node in the graph correlate with requirements 
traces pointing to that node. In order to assess that question, 
we implemented several traces recommenders that assess 
requirements traces for each node in the captured graph 
based on its dependencies to other nodes of the graph and 
their related requirements. The following introduces one 
such algorithm. We will later describe others. 

An intuitive and also simple algorithm counts the neigh-
bors of a node in the graph (neighbors are nodes that are 
either reachable by call dependencies or data dependencies). 
Some of those neighboring nodes may relate to a certain 
requirement and there are those that do not relate to that 
requirement. The algorithm then recommends requirements 
traces for the evaluated node based on the ratio of neighbors 
that relate vs. do not relate to that requirement. We are using 
the following algorithm to evaluate traceability between each 



requirement in the specification of a system and each ex-
ecuted method in its source code (i.e., each node): 

 
foreach n in graph { 

neighbors = countNeighbors(n); 
foreach r in requirementsSpecification { 
 tracingNeighbors =  
             countTracingNeighbors(n, r); 
 
 if (tracingNeighbors/neighbors > 0.5) 
       recommendation(n,r) = ‘trace’; 
 else 
       recommendation(n,r) = ‘no-trace’; 
} 

} 
In this algorithm, we are using a 50% threshold. That 

means that if more than 50% of a neighbor’s nodes (aka 
dependent methods) are tracing to a certain requirement then 
it is very likely that the node itself is also part of the re-
quirements implementation. We are using the example graph 
shown in Fig. 4 to demonstrate this recommendation process. 
The figure shows the method buttonControl3_action 
Performed() of class ListFrame in the center and its 
neighbors around. In order to compute recommendations for 
this node, we would iterate through each of the 12 require-
ments in the specification. For the first requirement R0, we 
find that 86% of the node’s neighbors (six out of seven) trace 
to R0 and this value is well above the threshold of 50%. That 
means that we would recommend a trace to R0 for the eva-
luated method. This recommendation is correct as the eva-
luated method is truly related to R0. This is evident in the 
node for buttonControl3_actionPerformed() to also 
list R0 as one of its requirements. Do note that we base our 
recommendation on the known traces of the neighboring 
nodes and not on the node under investigation. Thus, we are 
assessing whether the traceability of nodes with call and/or 
data dependencies (neighboring nodes) have a correlation to 
the traceability of the node itself. Proceeding with this 
process, we would eventually recommend traces to R0, R2, 

R5, and R12. A comparison with the actually existing traces 
in Figure 4 shows that a trace to R5 would be recommended 
which is currently missing in node ListFrame.button-
Control3_actionPerformed(), while the trace to R10 
would be identified as incorrect though it is currently present 
in the node. We refer to these two situations as wrong traces 
and missing traces. 

C. Step 3: Evaluating the Correctness of Recommendations 

In the following section we will discuss the quality of 
trace recommendations computed for the three evaluated 
systems with the algorithm introduced above. 

TABLE III.  RESULT TYPES FOR THE VALIDATION OF TRACE 
RECOMMENDATION 

Computed  
Recommendation 

Golden  
Standard RTM 

Validation 
Result 

Correctness 

Trace 
Trace 

TP Correct 
No-Trace FN Incorrect 

Trace 
No-Trace 

FP Incorrect 
No-Trace TN Correct 

 

In order to evaluate the correctness of a recommendation, 
it is compared with the golden standard. Table 3 shows the 
four possible combinations of recommendation and golden 
standard value. While TP (True Positive) and TN (True Neg-
ative) refer to correctly recommended traces and non-traces, 
a FN (False Negative) refers to a missing trace and a FP 
(False Positive) refers to a wrong trace. For each evaluated 
system, we count how often each of the four validation re-
sults occurs. These figures are provided in the next section. 
The reason for splitting recommendations of traced and non-
traced nodes is that for a typical system the RTM is very 
sparse and the number of traces compared to non-traces is 
very low. The splitting allows understanding where false 
recommendations are made with a particular emphasis on 
trace recommendations, which is typically the main focus of 
related work (see Section IX). 

 
Figure 4.  Example of a Call-Data Dependency Graph showing one node and its neighbors related by method call relationships (solid arcs with arrows) 

and method data relationships (dashed arcs without arrows). Each node identifies the requirements it traces to (labels Rx). 



The overall incorrectness (combining “trace” and “no-
trace”) is defined as formula (1) and shows the percentage of 
correct recommendations in relation to all given recommen-
dations. A value of 0% means that only correct recommenda-
tions are given and a value of 100% means that only incor-
rect recommendations are computed. 

 

 
 

The recall is defined as formula (2) and shows the per-
centage of proposed traces (ignoring “no-trace”) in relation 
to all recommendations on traced nodes. A value of 100% 
means that trace recommendations are complete (none are 
missing) as compared to the golden standard RTM. 

 

 

Finally, the precision is defined as formula (3) and shows 
the percentage of correctly proposed traces (ignoring “no-
trace”) in relation to all recommendations on trace nodes. A 
value of 100% means that none of the trace recommenda-
tions are wrong as compared to the golden standard RTM. 

 

 

VI. RESULTS (RESEARCH QUESTIONS REVISITED) 

The goal of our work is to understand the relationship be-
tween method call dependencies, method data dependencies, 
and requirements traces. In doing so, we primarily focused 
on those parts of the code that implement the given require-
ments. This led to roughly 90,000 trace recommendations 
computed for the three evaluated software systems. 

TABLE IV.  NUMBER OF CORRECT AND INCORRECT 
RECOMMENDATIONS FOR THE THREE CASE STUDY SYSTEMS  

 Correct Incorrect 
 TP TN FN FP 
Method call dependencies only (Call) 
VoD 357 1270 203 198 
Gantt Project 4173 41235 2719 1683 
JHotDraw 1220 32099 1204 505 
Method data dependencies only (Data) 
VoD 435 1413 125 55 
Gantt Project 2375 42326 4517 592 
JHotDraw 973 32404 1451 200 
Method call and method data dependencies (Call+Data) 
VoD 435 1417 125 51 
Gantt Project 4075 42028 2817 890 
JHotDraw 1222 32384 1202 220 

 
In order to answer our research questions (see Section III) 

we performed three experiments per evaluated system. First, 
we computed recommendations on a graph that contained 
only method call dependencies (Call Graph). This is the 
CDGraph minus all data dependencies. Second, we com-
puted recommendations on a graph that contained only me-
thod data dependencies (Data Graph). This is the CDGraph 
minus all call dependencies. Finally, we computed recom-
mendations on a complete CDGraph that contained both 
method call and method data dependencies (Call + Data 
Graph). Table 4 shows the results of these experiments as 
number of correct and incorrect recommendations on nodes 
with and without requirements traces.  

TABLE V.  AGGREGATED METRICS ASSESSING THE COMPUTED 
RECOMMENDATIONS FOR THE EVALUATED SYSTEMS (VOD, GANTT, AND 
JHOTDRAW) AND FOR THE THREE METHOD DEPENDENCY GRAPHS (CALL, 

DATA, AND CALL+DATA) 

 
Incor-

rectness  Recall  Precision 

VoD 
Call 19.77%  63.75% 64.33% 
Data 8.88%  76.78% 88.78% 
Call + Data 8.68%  77.68% 89.51% 

Gantt 
Project 

Call 8.84%  60.55% 71.27% 
Data 10.26%  34.46% 75.01% 
Call + Data 7.44%  59.13% 82.08% 

JHotDraw 
Call 4.88%  50.33% 70.73% 
Data 4.71%  40.14% 76.34% 
Call + Data 4.06%  50.41% 84.75% 

 
Table 5 reports the findings from Table 4 in form of the 

introduced metrics: incorrectness, recall, and precision for all 
three systems and the three different graphs. The results 
shown in these tables are used in the following to answer our 
research questions (see Section III). 

 

RQ1: Are method call dependencies relevant for evaluating 
requirements traces? 

We found that by purely evaluating method call depen-
dencies 4.88% (JHotDraw) to 19.77% (VoD) of the recom-
mendations were incorrect. Given that there are two possible 
traceability states (a trace vs. a no-trace), there is 50% 
chance of randomly guessing correctly. The result thus 
shows a strong relationship between method call dependen-
cies and requirements regions captured by traceability links, 
the computed results are far from random guessing. Thus, 
method call dependencies are relevant for evaluating re-
quirements traces (RQ1). This observation is in line with 
some related work which has been exploiting method call 
dependencies (e.g., fan-in/fan-out analysis). 
 

RQ2: Are method data dependencies relevant for evaluating 
requirements traces? 

We found that by purely evaluating method data depen-
dencies 4.71% (JHotDraw) to 10.26% (Gantt) of the recom-
mendations were incorrect. This result shows that also a 
strong relation exists between method data dependencies and 
requirements regions. In result, method data relations are 
relevant for evaluating requirements traces (RQ2) and sug-
gest that method data dependencies are a viable alternative to 
method call dependencies.  
 

RQ3: Are method call dependencies more relevant than 
method data dependencies for requirements traces? 

For JHotDraw and VoD less incorrect recommendations 
are computed based on the graph that only contains method 
data dependencies, while for Gantt less incorrect recommen-
dations are computed based on the Call graph. Our results 
suggest that method data relations are equally relevant for 
evaluating requirements traces (RQ3).  However, the key 
question is whether there is a combined benefit (next). 
 

RQ4: Are method call and method data dependencies com-
plementary to each other in evaluating traces? 

We found that by combining method call dependencies 
and method data dependencies into one graph (Call + Data) 
only 4.06% (JHotDraw) to 8.68% (VoD) of the computed 



recommendations were incorrect. These are the best results 
across all three systems, suggesting that method call and 
method data dependencies are in fact complementary (RQ4).  

If we investigate this further, we notice a strong benefit 
for both precision and recall. Looking at Table 5, we notice 
that the precision for Call+Data is always far above the pre-
cision for Call or Data individually. The same is true for the 
recall (except for Gantt which is nearly the same as the recall 
for Call). This suggests that the trace recommendations com-
puted for Call+Data leverage from the strengths of both Call 
and Data individually – i.e., Call and Data observations are 
complementary. This fact is also observable through Table 6. 
It shows: 1) total call edges, 2) total data edges, and 3) total 
overlaps where call edge and the data edge cover the same 
two nodes. Compared to the totals, we see that the overlaps 
are very small. 

TABLE VI.  OVERLAP BETWEEN CALL AND DATA EDGES IN THE 
CDGRAPHS FOR THE THREE CASE STUDY SYSTEMS 

 Call Data  Overlap
VoD 222 899 66 
GanttProject 5560 24243 1042 
JHotDraw 3943 14555 893 

 

RQ5: Are additional code characteristics relevant for eva-
luating requirements traces? 

After we found that we were able to compute the best 
recommendations based on the combined graph (Call + Da-
ta), we started to explore which other factors were influen-
cing the correctness of recommendations. We evaluated 
several code metrics on method, class, and package level: 
lines of code per method, number of method per class, num-
ber of attributes per class, depth of inheritance tree, afferent 
coupling, efferent coupling, and McCabe’s cyclomatic com-
plexity. However, we did not find a correlation between 
recommendation mistakes and any of these metrics. On the 
surface, it appears that typical code smells do not affect the 
relationship between code dependencies and traces. 

TABLE VII.  PERCENTAGE OF INCORRECT RECOMMENDATIONS IN 
RELATION TO PROPERTIES OF EVALUATED METHODS 

 Parameters Return Value Is Constructor
with without with without yes no

VoD 8.99% 9.20% 6.10% 9.51% 9.43% 8.46% 
GanttProject 9.53% 6.05% 8.43% 6.71% 5.14% 8.09% 
JHotDraw 4.40% 3.89% 4.36% 3.88% 2.91% 4.39% 

 

However, we also evaluated the relation between proper-
ties of a method and recommendation mistakes. By proper-
ties of a method we refer to whether the method has parame-
ters or not, whether it has a return value or not, and whether 
it is a constructor of a class or not. Though, we found differ-
ences for each studied property (see Table 7), we did not find 
a consistent correlation across all three evaluated systems. In 
fact, GanttProject and JHotDraw show the same effects, 
while Video on Demand shows exactly the opposite effect 
for all three properties. This finding requires a deeper analy-
sis with additional evaluated systems. Video on Demand is a 
very small system compared to GanttProject and JHotDraw, 
suggesting that there might be differences depending on the 
size of the system.  

Finally, we evaluated whether the number of require-
ments that a method is implementing is related to the number 
of incorrect recommendations that were computed for that 
method. Figure 5 shows the results of that analysis. For all 
three systems we found a strong correlation between both 
values. The more requirements a method is implementing, 
the more computed trace recommendations are incorrect. In 
result, we found that there are additional relevant code cha-
racteristics that should be considered when evaluating re-
quirements traces (RQ5). The observation in Figure 5 con-
firms a known problem that feature interactions are proble-
matic (i.e., the more requirements implement a method, the 
more pronounced is the feature interaction problem).  

 

 
Figure 5. Relation between the number of requirements a method is imple-

menting and its percentage of incorrect trace recommendations. 

VII. OTHER TRACE RECOMMENDATION ALGORITHMS 

Our focus for this paper was on investigating whether 
there are relationships between code dependencies and re-
quirements-to-code traceability, but not on finding the ideal 
algorithm that could exploit this relationship. This will be the 
focus of future work. For that reason we preferred a simple 
algorithm to make trace recommendations. However, we did 
test whether other trace recommendation algorithms would 
result in the same observations regarding research questions 
1-5. We found that the research questions held regardless of 
trace recommendation algorithm we applied. The following 
briefly summarizes one additional algorithm that refines the 
role of data dependencies to illustrate this.  

As we discussed in Section V.A, the numbers on data 
edges in the CDGraph represent the amount of actual data 
types that two methods share. It is intuitive to think that if 
two methods share more types of data, they are more likely 
to cooperate with each other and are also more likely to trace 
to the same requirement. In an attempt to evaluate that hypo-
thesis, we assigned extra weight to both tracingNeighbors 
and neighbors in the recommendation algorithm (see Sec-
tion V.B) if at least one neighbor method traces to a given 
requirement and both methods share more than one data 
types. In fact, if the number of data types that the evaluated 
method and the neighbor method share is N, then we as-
signed an extra weight of N-1. For example, in Fig. 4, let’s 
set ListFrame.buttonControl3_actionPerformed() 
to be the evaluated method. Then this method shares three 
data types with its neighbor method ListFrame.-init-(). 
In giving a trace recommendation for R10, the tracingNeigh-
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bors will be 5 and the neighbors will be 9, so the computed 
value for R10 is larger than 0.5 (50%) and the trace recom-
mendation for the evaluated method and R10 would 
be ’trace’. This trace is correct according to the golden stan-
dard RTM and improves the earlier problem of a missing 
trace. 

TABLE VIII.  NUMBER OF CORRECT AND INCORRECT 
RECOMMENDATIONS USING TWO DIFFERENT ALGORITHMS BASED ON THE 

CALL+DATA METHOD DEPENDENCY GRAPH 

  Correct Incorrect

TP TN FN FP
Intuitive algorithm in Table 5 
VoD 435 1417 125 51 
Gantt Project 4075 42028 2817 890 
JHotDraw 1222 32384 1202 220 
Algorithm counting data types in data edges 
VoD 455 1417 105 51 
Gantt Project 4141 42011 2751 907 
JHotDraw 1249 32362 1175 242 

TABLE IX.  AGGREGATED METRICS ASSESSING THE COMPUTED 
RECOMMENDATIONS USING TWO DIFFERENT ALGORITHMS BASED ON THE 

CALL+DATA METHOD DEPENDENCY GRAPH 

 Incor-
rectness Recall Precision 

VoD 
Intuitive 8.68% 77.68% 89.51%
Type Count 7.69% 81.25% 89.93%

Gantt 
Project 

Intuitive 7.44% 59.13% 82.08%
Type Count 7.34% 60.08% 82.04%

JHotDraw 
Intuitive 4.06% 50.41% 84.75%
Type Count 4.05% 51.53% 83.77% 

 
The computed recommendations for the second algo-

rithm show that the amount of data types on each data edge 
in the CDGraph can help to provide slightly better trace 
recommendations. The improvements of the new algorithm 
are small only. However, as we discussed, it was not the goal 
of this paper to optimize the recommendation but rather to 
make sure that different recommendation algorithms repli-
cate our findings discussed above. We thus tried a range of 
other algorithms also with the same basic observations dis-
cussed earlier. 

VIII. THREATS TO VALIDITY 

A possible threat to validity is the possible incomplete-
ness of code dependencies (as in missing calls and data de-
pendencies). We did aim to cover all code that implemented 
the requirements we analyzed. However, incompleteness is a 
likely fact though we believe it is not a serious threat because 
call and data dependencies would have equally “suffered” 
from this problem and our goal was the comparison of both. 

As discussed in Section V, we first collected method-
using-data records at runtime and then capture method data 
dependencies by comparing the hash code value of objects 
that are pointed to by the variables in those records. We 
faced the problem of handling data records without a unique 
identifier, such as static fields (static variables can only be 
declared as fields in Java) and local variables of Java primi-
tive types (e.g., int, double, boolean, etc.). Static fields are 
easy to identify because a static field is initialized only once 

when its owner class is loaded and this field can be accessed 
directly by the class name and does not need any object. So 
we simply use the type of this field, the name of this field, 
and the name of the class where this static field is declared to 
identify a given static field (including static fields with pri-
mitive types). For a given non-static field with primitive 
types, we can first locate the object that owns this field via 
its hash code value and then identify this field with the type 
and name of it inside its owner object. Unfortunately, we 
could not find a unique identifier for local variables with 
primitive types inside methods.  

Although, we were not able to capture all data dependen-
cy due to tool limitations, we did capture enough to demon-
strate the strong benefit of combining call and data depen-
dencies. More data dependencies might have tilted the bal-
ance even stronger in favor of data (affecting research ques-
tion 3 mostly), we doubt that it would have changed the 
primary message about the complementary nature of call and 
data dependencies.  

IX. RELATED WORK 

Extracting object-oriented dataflow communication is a 
research hotspot and lots of work has been done in this field. 
Milanova et al. [5] extended Andersen’s static analysis tech-
nology [11] to extract points-to information (this information 
shows which pointers, or heap references, can point to which 
variables or storage locations) from Java. In our work, we 
use the hash code value, which represents a unique id for 
each memory location, to capture data dependencies among 
methods. Lienhard et al. [6] analyzed execution traces and 
extracted an Object Flow Graph (OFG) in which edges 
represent objects, and nodes represent code structures (either 
classes or groups of classes). We also generate data edges 
between two method nodes in the CDGraph via method-
using-data records, which are collected during runtime. 
However, all that work focuses on the relationship among 
objects or classes. Instead, our work is particularly concerned 
with data dependencies among methods, because we want to 
compute trace recommendations on the method level of 
source code. 

In the last two decades, plenty of efforts have been done 
in traceability, especially in requirements-to-code traceability. 
Information retrieval, to date the most widely researched 
technology identifies trace links based on naming similarities 
between source code and software artifacts (including re-
quirements) [7-9]. However, the result of simple keyword 
matching is rather low in precision so more sophisticated 
technologies are necessary. Zhao et al. [8] proposed an ap-
proach (SNIAFL) using a static representation of the source 
code to refine trace links achieved by information retrieval. 
Eaddy et al. [9] presented a framework (CERBERUS) that 
combines information retrieval, static analysis (similar to the 
SNIAFL approach), and dynamic analysis. Hill et al. [14] 
used both lexical analysis and call graph exploration in a tool 
called Dora to perform software maintenance tasks. This tool 
then computes a subset of the call graph relevant to the query, 
called a relevant neighborhood. Their work does not rely on 
data dependencies but it does show that there is a benefit in 
considering larger neighborhoods which would likely benefit 



our approach also. McMillan et al. [13] is the only paper 
known to us that considers data flow to establish traceability. 
However, their data flows are approximated and exhibit false 
positives and false negatives. Their conclusion is that data 
flows do not appear to have a benefit which is contradictory 
to our observations. This might be due to the FP/FN problem 
which needs to be explored in future work. All of these ap-
proaches [7-9, 13, 14] use either control flow and/or data 
flow message to improve the quality of the trace recovery 
process based on information retrieval and lay the ground of 
understanding the relationship between traces and method 
communications such as method calling relationship and 
method-data-sharing. Yet, our focus was not on automatical-
ly identifying new traces. Instead we are focusing on whether 
call and data dependencies are helpful in assessing require-
ments-to-code traceability. 

In earlier work [10], we focused only on calling depen-
dencies between methods in order to identify regions in the 
source code that implement a given requirement. We found 
that requirements truly were implemented in connected areas 
of the source code rather than distributed. In a follow-on 
publication [3] we introduced a surroundness property to 
requirements regions. In the publication, we found that a 
given method typically shares the same traces to require-
ments as its neighbor methods, identified by method calls. In 
this work we built upon those previous observations and 
introduced additional method data dependencies in order to 
identify an even more relevant set of neighbors per method, 
compared to only analyzing method call dependencies. We 
showed that these two kinds of method dependencies are 
complementary to each other and help to better understand 
where a requirement is implemented in the source code. 

X. CONCLUSIONS  

In this paper, we investigated the question of whether me-
thod data dependencies are similarly related to requirements 
as method call dependencies. For example, if two methods 
do not call one another, but do have access to the same data 
then is this information relevant? We formulated several 
research questions and validated them on three large soft-
ware systems, covering about 120 KLOC. Our findings are 
that method data dependencies are equally related to re-
quirements as method call dependencies. But, most interes-
tingly, our analyses show that method data dependencies 
complement method call dependencies. That means by eva-
luating both we reached the best understanding of how a 
method is related to a requirement. These findings have 
strong implications on all forms of code understanding, in-
cluding trace capture, maintenance, and validation tech-
niques. For example, we  believe that common information 
retrieval approaches in traceability can and should be aug-
mented with knowledge on call and data dependencies. We 
also believe that other research directions such as program 
understanding would benefit from the combined knowledge 
of call and data dependencies. This work thus benefits the 
research community to encourage further research in com-
bining call and data dependencies. The tool for capturing 
data dependencies is available at http://www.sea.jku.at/tools. 
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